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Model-Data Ecosystems:
Challenges, Tools, and Trends

Peter J. Haas
IBM Almaden Research Center
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Great Progress in Analytics by the Database Community

Statistical Text analytics
analysis
Data mining

Machine learning

Transactions &

Reports, IMS OLAP

Massive Data/Cloud DB

Uncertain data

Relational model & . - Semantic data
Semi-structured &  Web data Streaming data

SQL
Q Unstructured text
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Great Progress in Analytics by the Database Community

Statistical Text analytics
analysis
Data mining

Transactions & & L\
Reports, IMS OLAP A

Relational model & . :
soL Semi-structured &  Web data Streaming data
Unstructured text

Machine learning

Massive Data/Cloud DB

Uncertain data

Semantic data

BUT: Why do enterprises care about
(big) data in the first place?
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Because Enterprises Need to Make DECISIONS

inf gy online
Analytics Section

“Analytics is...a complete [enterprise] problem solving
and decision making process

Descriptive Analytics: Finding patterns and
relationships in historical and existing data

1 !

Predictive analytics: predict future probabilities
and trends to allow what-if analysis

1 !

Prescriptive analytics: deterministic and stochastic optimization
to support better decision making

© 2012 IBM Corporation
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Shallow Versus Deep Predictive Analytics
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Data Is dead... Without What-If Models’,_’ —~

System structure

Descriptive and shallow predictive - Causal relationships
analytics are last resorts for Dynamics

decision making in complex systems...

When you can’ t find the domain

-
experts... -
...but they are the main focus of
Data
l Generates hypotheses for
Models
! Guides collection of
generates \
Data
... The notion that quantitative, numerical parameterizes
data are the only type of information needed .
to build an accurate model is flawed. In fact, Models

| believe that the typical business obsession with

numeric data can do more damage than good. Ecosystem of Data and Models

- Eric Bonabeau

© 2012 IBM Corporation



Confluence of Research

on (Big) Data Management & Predictive Analytics

IBM Research

EXPLORING
44 THROUGH
“f ii 14

Today: An idiosyncratic whirlwind tour of

Simulation and information integration
Information integration via agent-based simulation
Fusing real & simulated data (data assimilation)

Data-intensive simulation
Composite simulation models

Data transformation between models
Query optimization — simulation-run optimization
Incorporating simulation into DB systems and vice versa

,“ ,.—“‘

2 Imkputing missing data with models

Data source  Dataflow Simulation model D

Transportation "

- Z Buying and esting |
ic
> Exercise. __

G o o — I
L Lt | Modeling large complex systems

(e.g., obesity, epidemics)

Goal: Some interesting examples to stimulate your thinking

© - Shaped presentation, additional topics in paper (metamodeling)

© 2012 IBM Corporation
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Simulation and information integration
Information integration via agent-based simulation
Fusing real & simulated data (data assimilation)

© 2012 IBM Corporation



Information Integration via Agent-Based Simulation
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IBM Researc

Il via Agent-Based Simulation: Marketing Example

[Bonabeau, WSC 2013]
0\

Many drivers of A
consumer behavior... *':m"__

Non-overlapping datasets :
. . ...are now integrated
studied in isolation...
Statistical
Inference
Calibration

Perceptions

Source: Eric Bonabeau S W Corporation
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IBM Researc

Il via Agent-Based Simulation: Marketing Example
[Bonabeau, WSC 2013] |

Key problem is model calibration

(see paper)
- Maximum likelihood
- Method of simulated moments

- Machine learning?

Many drivers of
consumer behavior...

Nonjove.rla.\ppln.g datasets ...are now integrated
studied in isolation...

Statistical
Inference
Calibration

Perceptions

Source: Eric Bonabeau © 2T B CrpcTation



Fusing Real and Simulated Data (Data Assimilation)
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Fusing Real and Simulated Data: Data Assimilation

Integrate real and simulated data via particle filtering [Xue et al., 2012]

Classical Monte Carlo estimation of density 7, (X.,) =y,(X.,) ! Z,

7 (x.,)= 211%5)({;” (x.,) so that

E[g(xln)] = jg(Xl:n)ﬂn (Xl:n) Xm:n
~ J‘g(Xl:n)ﬁn (Xl:n) Xm:n = %Zjvzl g(Xl:n)

= Can fail when nis large and/or z, is complex (Z, is often the culprit)

16  1/61/6

Importance sampling

= Sample from an “easier” importance density g, and correct:
Wn (Xl:n) = 7//7 (Xl:n) / qn (Xl:n)
72-/7 (Xl:n) = Wn (Xl:n) qn(Xl:n) / Zn and

Zn = J-Wn (Xl:n) qn (Xl:n) Xm:n
»= So draw N i.i.d. samples (particles) from g, and insert MC approx. for g, above:

. N i
ﬂ-n (Xlzn) = Z/=1WN5X1’;” (Xl:n)

; ; N ; - Z,notneeded to
where W, =w, (Xl:n) /ijan (Xl:n) = compute weights

© 2012 IBM Corporation
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Data Assimilation, Continued

Sequential importance sampling (SIS)
= Importance sampling where g, (x.,) =9, (Xl)szz g, (X | Xpet)

= Recursive formula for weights:

7n (Xl:n)
7/7—1 (Xl:n—l)qn (Xn I Xl:n—l)

Wn (Xl:n) = Wn—l (Xl:n—l)a(Xl:n) Where 0!,7 =

SIS with resampling (SISR)
= Stabilize SIS by resampling according to W, ,W?,...,W" at each step

= This is a sample from 7, --- set all new weights equal to 1/N
{(2,0.7), (4,0.2), (5,0.1) }

—{ (2, 1/3), (2, 1/3) (5, 1/3) }
Particle filtering (SISR for hidden Markov models)
= Discrete time Markov chain {X },., with transition probability density p (x| X,.1)

= Observation process { VY, },., with probs p.(y,|x,) of observation given true state
" Take 7//7()(1:/7) = 10/7 (Xlzn ’yl:n) SO 72-/7 (Xl:n) = 10/7 (Xl:n Iyl:n)
= Optimal importance density (minimizes variance of weights):

q;(Xn |X/7_1’y/7_1) o pn(Xn IXn_l)pn(yn |X/7)

© 2012 IBM Corporation
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Data Assimilation, Continued

AppliC&tiOn to data assimilation Algorithm 2 Particle Filtering
[Xue et al., 2013] I: Sample {X{} <i<y from g, (x; | ¥})
2 50mpulc weights wy (X]) = py(X{)pa(Y, | X])/qu(X] | V)) for 1 <i <
= DEVS-FIRE model 3: Compute normalized weights {W}} <i<n
. . . . A- g ) 7i i e i 1 i .y S
— Models stochastic progression of wildfire over 3‘ ‘rf)‘r-‘:";P'zt d{ (()“I'XI)}I‘J‘--‘” to obtain {(5.X})}1<icn
g”dded terrain 6: Sa;nplc {X; h<icn from gp(xp | Y,,.X,i 1)
— State e {unburned, burned, burning-intensity} 7. fori=12,... Ndo
. 8: Compute weight a, = 7 ‘
— Merge model data x and sensor data y. p,(x,|),) Pu¥n | XD)pa(XE | RE )/ qn(Xi | ¥uXi )
9: end for v
5 . ) 170 01 N I AR - '<:‘
= Gaussian sensor model: g (v,]x,) 10: Compute normghu.d weights W, - ay, ?_J_’,a,, forl <i<N
:l: d}}_csamplc {(Wi. X5 ) hi<iey to obtain {(x.X;) }i<icn
2: end for

Original importance density: p(x,|x, ), 7>1
— To sample from importance density (step 6), run
simulation for 1 time step
— Analytical expressions (step 8) reduce to sensor
model
— Ignores sensor reading
reca‘": qn(Xn | Xn_l’yn_]_) oC pn(Xn | Xn_]_)pn(yn IXn)

» Improved sensor-aware importance density under
development

— Model and sensors weighted according to
“confidence”

— Kernel density estimation used to obtain
analytical expressions (step 8)
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Data-intensive simulation

Composite simulation models

Data transformation between models

Query optimization — simulation-run optimization
Incorporating simulation into DB systems and vice versa

© 2012 IBM Corporation



Composite Simulation Models
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Composite Simulation Models: Overview

= Motivation:
- DO mai n experts have d Iffe rent WOfldViEWS Data source Dataflow Simulation model Dataflow Data Transformation

— Use different vocabularies
Transportation /\

— Sit in different organizations
Geosgatial aliinment

— Develop models on different platforms
Time alignme[ﬂ:

Buying a_nd eating

— Don’'t want to rewrite existing models!

—

Demographic

» Composite modeling approach
— Combines data integration with simulation
— Loose coupling via data exchange

— Metadata for detection and semi-automatic
correction of data mismatches

— Ex: Splash prototype [Tan et al., IHI 2012]

Exercise

BMI Model

» Advantages
— Model curation and re-use
— Flexibility
— No need for “universal” platform, API, etc.

© 2012 IBM Corporation
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Composite Simulation Models: Splash Example

add
fan
il Deies
Uni
Descrption Input il 5 model comaren poprtan d
a o el
| [ Conest

FeActor name="BNIl Model" ype = ‘moder” model_fype = “smabon”
sim_type = "coninuous-determinisic™ owner="Jane Modeler'>
<Description>
Precict weight change over tme based on an indnicual s energy  and food
ntake. Implomentod in C. Reforence:
</Description>
<Emwonment>
<Variable namo="EXEC_DIR" dofault="Splash" doscription="cxocutablo
directory path'r>
<Variablo name="SADL DIR" default="/Splas/SADL" description="schoma
droctory path'>
<[Enronment>
<Exocution>
<Cor D
<Titlo>Run BMI modol</Tio>
</Exncution>
" <Argaments>
nput name="demographics” sadi="$SADL_DIR/BMIinput sadl”
escription="demographics data’>
<Output name="people” sadi="$SADL_DIR/BMIOuiput sadr*
descriptien="poapia” s dally calculated BMI>
<JArguments>
IActor>

GIS Data

{ S

Population/Store Demographic Data

1

Transportation Model

Travel Delay by Zones
Zone-Coordinate Mapper
Travel Delay by Coordinates

Buying and Eating Model SDF Director
Households and Stores

Join Demograp hics
Energy Balance

ity Data Exercise Model
Facility Data m Exercise Data

BMI Mode!
%

SADL metadata language

Experiment Factors

Select experiment factors (LY

Main-Eflects Plot (PHI Frofit x 10%5)

Design of Experiments.

PHI_Model | Financial_Rate_ Madel Select an experimental design and the numb I|d | / |
- = | | =
= PHI_Model.Commandine(1) Experimental Design: {
saDL & Full Factorial | Default numt [
population L Totak: 11 conditions, 2500 executions. N
= PHI_Model parameters(12) CanditionNo.  Nbr. of Replication
saL (@ #1 400 s
. paymentModel: 0.1
@ paymenthodel value [ v (051015 s ey < Financial Rate_Model
[] capitationPerParticipant Value #a 200 < fin_parameters
#s 200 np:20
costModel Value #6 200 [N
[ terminalAge value #7 200
=8 200
[ diabetesRiskThreshhold  Value > e
I diabetesRiskReduction Value #10 200
n 200
< Back MNext >

<Back

Run-time components:

- Kepler adapted for model execution
- Experiment Manager

(sensitivity analysis, metamodeling, optimization)

| Kepler adapted for model compositio

S~

Design-time

components

Field Atiributes Table.
-

E——— Generate Done

Data transformation tools:
- Clio++
- Time Aligner (MapReduce algorithms)
- Templating mechanism

© 2012 IBM Corporation
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Composite Simulation Models: Data transformation |

= Algebra of “gridfields” [Howe and Maier, VLDBJ 2005]

— Grid: collection of cells (of various dimension) + incidence relation

D ERA

- dim(x) = dim(y) and x =vy; or
- dim(x) < dim(y) and x “touches” y

— Gridfield = grid + mappings from cells to data values
— Key operation on gridfields: regrid
e Maps set S of source cells to a given target cell

e Applies aggregation functions to S to compute associated data values
— Restrictions (a kind of selection) commute with regrid — optimizations

115

139

55

13.1

45

- (] (]

Fig. 1 Datasets bound to the nodes and polygons of a 2-D grid

Source: Howe & Maier

© 2012 IBM Corporation
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Composite Simulation Models: Data Transformation 1l

Massive scale time alignment

= Common Splash time alignment operation:

Interpolating (massive) time-series data
= Parallelize on Hadoop
= Linear interpolation: easy

= Cubic spline interpolation: hard

— Computing spline constants = solving
massive tri-diagonal linear system

— Solution: distributed stochastic gradient

descent algorithm (see paper) .

Cubic-spline interpolation

1
X X linear
— Cubic Spline

True

S
|0 i i Irregular source time series
Sliding window by size (n=4)
f
E 6 4 Ti el Regular target time series to be calculated.
: 11
O I R B T
h
E 0 0 0 0 dz — d1 _ d1 — do
h h,
h+h h 0 0 0
3 6 d,-d, d,-d,
: : : : : b= h, h,
0 o hm—s hm—3 + hm—2 I«'m—z
6 3 6 dm — dm—l _ dm—l — dm 2
0 O 0 hm—2 I"lm—z + hm—l hm—l hm—2
6 3

Solve: Ax=Db

© 2012 IBM Corporation
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Composite Simulation Models: Optimizing Simulation Runs

Motivating example: Two models in series, 100 reps

Identical

Model 1 — Model 2 | @@

Deterministic Stochastic I ——

L ———0

= Nalve approach: execute composite model . 0

(i.e., Models 1 & 2) 100 times '.,‘ O_‘_’Oi ,:

= A better approach: L O——0
Model 1 —» Cache Model 2 ’

—Execute Model 1 once and cache result
—Read from cache when executing Model 1

Question: Can result-caching idea be generalized?

IBM Confidential © 2012 IBM Corporation



Optimizing Simulation Runs (Continued)

Result-Caching: General Method for Two Models [Haas, WSC 2014]

= Running example: Two models in series

Model 1 g» Model 2 f—~ Y,

Stochastic Stochastic

= Goal: Estimate 6 = E[Y,] based on n replications

= Result-caching approach:
Japp Ex: n=10, [an]|=4

1. Choose a € (0,1] (the re-use factor)

2. Generate fom} outputs from Model 1 and cache them

3. To execute Model 2, cycle through results

- _1 n
4. Estimate© by 0, =n Zi=1 Yzii ¥~ Dependent

IBM Confidential © 2012 IBM Corporation
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Result-Caching: Optimizing the Re-Use Factor

Budget-constrained setting [Glynn & Whitt 1992]
= Cost of producing n outputs from Model 2 is C_ = Zjiﬂ T, + Z;‘zl 1, (random)
» Under (large) fixed computational budget c:
—Number of Model 2 outputs produced is N(c) =max{n>0:C_<c}
—Estimator is U(c) = 6., (average of a random # of dependent variables)

Key result: a central limit theorem

Suppose that E[t. + t, + Y 2] < . Then U(c) is asymptotically N(0,g(a) / ¢).

where I, =|1/0a | and

(expected cost per obs.) x (variance per obs.)

= Thus, minimize g(a) [or maximize asymptotic efficiency =1/ g(a) ]

IBM Confidential © 2012 IBM Corporation
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Result-Caching: The Optimal Re-Use Factor

Optimal solution
= Assume that Cov[Y,,Y,]>0
= Approximate r, by 1/ a

1/2

- E[x,]/E[r,]

| (var[Y,1/ CovY,. Y;1) -1 -

a

Observations
—If Model 1 cost is large relative to Model 2, then high re-use of output
— If Model 2 insensitive to Model 1 (Cov << Var), then high re-use
—If Model 1 is deterministic (Cov = 0), then total re-use

Ongoing work

» Generalize to > 2 models (math similar to sampling-based join-size estimation)
» Develop techniques to compute/approximate needed statistics

* In general: Extend query optimization to “simulation-run optimization”

IBM Confidential © 2012 IBM Corporation



Incorporating Simulation into DB Systems
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Incorporating Simulation into DB |: MCDB [sampani et al., TODS 2011]

CREATE TABLE optionVal (opID, val) AS
FOR EACH o IN option
WITH oVal AS optionSim(

VALUES(o.initVal, o.r, o.sigma, 0.k, o.m, 0.T))

SELECT o.0pID, v.VALUE FROM oVal v

<€<—— Stochastic table

optionSim = Value generation (VG) function

Random DB =D

-

Q(D) =
Select c.oplD, SUM(...)

N
| Generator|

Q(d)
Q(d,)

.()(dn)

Instantiations
(possible worlds)

\

Var [ totVal |
. |
e B

E [ totVal ]

Histogram
Error bounds

4

Implementation uses “tuple bundle” techniques, parallel DB & MapReduce execution

Challenges: extreme quantiles, threshold queries (>2% decline in sales with prob > 50%)

© 2012 IBM Corporation
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Incorporating Simulation into DB I1: SImSQL

» Re-implementation and extension of MCDB [Cai et al., SIGMOD 2013]

— Database sequence: D[0], D[1], D[2], ...
— VG function for D[i] can be parameterized on any table in D[i-1]
— l.e., Can simulate database-valued Markov chains

» Potential application to massive-scale agent-based simulations
[Wang et al., VLDB, 2010]

L e i e
agentl 2.34 2.48 Infected
agent2 3,57 3.72 recovered N
agent3 50.20 80.9  susceptible Y

» Agent-based simulation = sequence of self-joins
— Often, only nearby agents interact, so can exploit parallel processing
— Not really explored in SImSQL setting

© 2012 IBM Corporation



Incorporating DB Systems into Simulation
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Incorporating DB into Simulation: Indemics

» Indemics system for simulating epidemics [Bisset et al., ACM TOMACS 2014]

Uses HPC for compute-intensive tasks (disease propagation), DBMS for data-
intensive tasks (state assessment and intervention)

Observer can stop simulation, input an intervention, then resume

INDEMICS Clients (IC) i
t t t t
_—INDEMICS .
Middleware 1 \
Platform
(IMP)
= ~INDEMICS Intervention
/" INDEMICS Epidemic | el

P s mee e o Simulation and Situation |
e L Assessment Engine (ISSAE)

Engine (IEPSE)

High Performance j Master Node
Computing Cluster

U s ok . \_

Network epidemic model Database of demographic info

Database
Management
System

Source: Bisset et al.
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Indemics, Continued

Example intervention strategy:

Algorithm 1 Vaccinate preschoolers if more than 1% are sick

CREATE TABLE Preschool(pid) AS
(SELECT pid FROM Person WHERE 0 < age < 4):
/* Based on demographic data */
DEFINE nPreschool AS (SELECT COUNT(pid) FROM Preschool);
for day = 1 to 300 do
/* Based on demographic and disease dynamic data */
WITH InfectedPreschool (pid) AS
(SELECT pid FROM Preschool, InfectedPerson
WHERE Preschool.pid = InfectedPerson.pid);
DEFINE ninfectedPreschool AS
(SELECT COUNT(pid) FROM InfectedPreschool);
if nInfectedPreschool > 1% x nPreschool then
Apply vaccines to SELECT( pid FROM Preschool):
/* Intervention subpopulation and action */
end if
end for

Formal model of system:
= Coevolving Graphical Discrete Dynamical System (CGDDS)

= Partially observable Markov decision process (POMDP)

IBM Confidential © 2012 IBM Corporation
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Conclusions

= [ntertwining of data management and simulation — both are needed
= Many problems in early stages, need formalization
= Lots of room for interesting research!

Data

Data-intensive simulation
Composite simulation models Generates hypotheses for
Data transformation between models :
L : : Y Models
Query optimization — simulation-run optimization
: . c : Guides collection of
Incorporating simulation into DB systems and vice versa generates \
Data
r parameterizes
Simulation and information integration Models

Information integration via agent-based simulation
Fusing real & simulated data (data assimilation) Ecosystem of Data and Models
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